

Welcome to musiccast2mqtt

MusicCast2MQTT is a gateway between your Yamaha MusicCast devices and your MQTT broker.
It is based on the mqttgateway [http://mqttgateway.readthedocs.io/en/latest/] library.
It translates incoming MQTT messages into MusicCast commands.
The MQTT syntax required is flexible and configurable.

Installation

MusicCast2MQTT is available on pip. It is preferrable to use the --user option
or use a virtual environment.

pip install --user musiccast2mqtt

Execution

pip installs an entry-point called musiccast2mqtt. Its location depends on your system
but hopefully your PATH environment variable already points there, so you can type anywhere:

musiccast2mqtt

and you should see a bunch of logs on the console.

Next step is to configure the application. Check the
documentation [http://musiccast2mqtt.readthedocs.io/].

Any issues, let me know here [https://github.com/ppt000/musiccast2mqtt/issues].

Contents

	1. Welcome
	1.1. Installation

	1.2. Execution

	2. MusicCast gateway to MQTT
	2.1. Introduction

	2.2. Installation

	2.3. Configuration

	2.4. Launch

	2.5. Defining the audio-video System

	2.6. Naming Devices, Zones, Sources and Feeds

	2.7. Data Representation

	2.8. Interface Logic

	2.9. Audio-Video Concepts

	3. Usage
	3.1. Addressing the MusicCast Gateway

	3.2. Sending commands

	3.3. Vocabulary

	3.4. Recognised actions

	3.5. Mapping

	3.6. Examples

	4. Package Documentation
	4.1. Warning

	4.2. Modules

1. Welcome to musiccast2mqtt

MusicCast2MQTT is a gateway between your Yamaha MusicCast devices and your MQTT broker.
It is based on the mqttgateway [http://mqttgateway.readthedocs.io/en/latest/] library.
It translates incoming MQTT messages into MusicCast commands.
The MQTT syntax required is flexible and configurable.

1.1. Installation

MusicCast2MQTT is available on pip. It is preferrable to use the --user option
or use a virtual environment.

pip install --user musiccast2mqtt

1.2. Execution

pip installs an entry-point called musiccast2mqtt. Its location depends on your system
but hopefully your PATH environment variable already points there, so you can type anywhere:

musiccast2mqtt

and you should see a bunch of logs on the console.

Next step is to configure the application. Check the
documentation [http://musiccast2mqtt.readthedocs.io/].

Any issues, let me know here [https://github.com/ppt000/musiccast2mqtt/issues].

2. Yamaha MusicCast Interface

This is a guide on how to get started with the MusicCast to MQTT gateway.
It is part of a wider project based on the library mqttgateway [http://mqttgateway.readthedocs.io/en/latest/].
Some of the steps to install and configure this interface are described
in more details there.

2.1. Introduction

The steps to make this gateway work are:

	Install the application.

	Update the configuration file.

	Define your audio-video system in a JSON file (the most important step).

	Launch the process.

2.2. Installation

Use the PyPi repository with the pip command, with your preferred options (I use
the --user option but you can set up a virtual environment or install it as super
user system-wide):

pip --user musiccast2mqtt

The only non-standard dependencies are the mqttgateway library
and the paho mqtt library.

The pip process installs an executable file musicast2mqtt.
Try to run it. If the PATH on your system is configured appropriately, it
should start the process with all the default configuration and log some messages
to start with.

If there are any problems, it might be a PATH issue. Locate the executable
file in your file system and try to run it by pointing at it directly. If it still
doesn’t work, check the documentation of the mqttgateway library or leave an issue
on GitHub [https://github.com/ppt000/musiccast2mqtt/issues].

The location of the installation depends on the options chosen in the pip command.
Find it in order to use the configuration and other data files as templates.

2.3. Configuration

The configuration file musiccast2mqtt.conf is in the musiccast2mqtt folder of the
installation.
It can be left there or moved somewhere else, in which case its location will have to be
specified in the argument of the launch command.
Change the MQTT broker details to route the application to your own broker.
Once your system definition file is ready (see below), also include its name and location
in the appropriate option.

2.4. Launch

To launch the application with the new configuration file, simply add the location and name
as the first (and only) argument to the launch command, for example:

musiccast2mqtt musiccast2mqtt.conf

If the argument given is an absolute path then there is no ambiguity. If it is a relative path,
the application will look first in the current directory and then in the installation directory
(the directory of the launch script musiccast_start.py to be precise).

2.5. Defining the audio-video System

It would be nice to have a self-discovery process that finds out what are the devices
available online and what are their characteristics. The Yamaha API provides some
functionality to do that.
However this would only work if all of the devices were connected
with the same protocol. Even then, some essential information would be missing like, for example,
what device is physically connected to a given input on a receiver.
This interface aims to work in a realistic environment where not all devices communicate
via MusicCast, or do not even communicate at all. In this case, writing a system
description is an unavoidable step.

This system description defines all the devices available, some of their characteristics
and their connections.
In practice, it is a JSON formatted file.
A template is provided as well as a JSON schema to test it.

The structure of the system description partly reflects the system representation used by the
MusicCast API. For example all device have zones, even if they are pure players and have
no amplification (e.g. the Network Player CD-NT670D).

The system description also introduces a distinction between inputs of receivers: those that are
native sources, i.e. where the audio signal is produced on the same device (a tuner for example),
and those that are simple audio inputs, or feeds, where the audio signal actually
comes from another device (a separate CD player for example).

For further explanations of the reasons behind those distinctions and other design choices,
go to the Data Representation section.

The format of the system description is therefore made of an array of devices, each with
a small set of characteristics (their IP address for example), and 3 arrays within each device
defining their zones, sources and feeds.
All zones, sources and feeds have an internal id, and, if the device is a MusicCast
enabled device, an mcid which is the name of the zone or input as defined by the
MusicCast API. It is important to keep those id separate even if they can be the same.
The internal id is used for various code logic,
whereas the mcid is used to send the actual HTTP commands to the MusicCast devices.
For more details, see Naming Devices, Zones, Sources and Feeds.

Zones have one important characteristic: the location that they power.
A zone will generally be defined as an amplifying stage of a receiver, connected
to speakers located in a specific room or area.
The location of the zone will be this room or area.
This has to be a one-to-one relationship throughout the system, except for the
zones that are not proper zones (the pure players case) and for which the location
is set to an empty string.

Sources do not have extra characteristics, but their
id has a particular use in the command dispatch mechanism and so it needs
to be chosen with care. See Naming Devices, Zones, Sources and Feeds for more details.

Finally each Feed need to specify the external device that is connected
to it. If that device is MusicCast enabled, then the specific zone to use for the commands
within that device needs to be specified as well.

The exact schema is as pictured below.

[image: _images/musiccast_jsonschema.png]
Use the template musiccast_sysdef_template_json.py to get started (shown below).
Follow the instructions in the comments, remove all comments and the first line (it’s there to
make it look like a python file) and save it with the name of your choice (musiccast_sysdef.json for example). Make sure it is a proper JSON file:
the extension has to be json and it should be validated with the JSON schema provided musiccast_sysdef_schema.json. Use an online validator like this one [https://www.jsonschemavalidator.net/], and select the schema Schema Draft v7.

Remove all comments and the first line to make this file a proper JSON file.
Template = \
{ "devices":
 [
 { # This is a MusicCast device:
 "id": "NetworkPlayer", # Required. Will be used to identify the device when addressed by
 # messages.
 "model": "CD-NT670D", # Optional and unused for now
 "protocol": "YEC", # Required only if MusicCast, in which case it has to be set to "YEC"
 "host": "192.168.1.10", # Required only if MusicCast
 "zones": [# 1 zone only here, and it is only a 'pass-through' one.
 {"id": "MAIN", # Required, choose what is best. Only used for logs.
 # Doesn't have to be the same as the mcid.
 "location": "", # No location as this is a 'pure player'.
 "mcid": "main"}], # Only required if MusicCast, in which case it MUST be a valid
 # MusicCast zone identifier for this MusicCast device.
 # This means it will normally be either main or zone2, zone3...
 "sources": [# Only define the sources that will be used.
 {"id": "SPOTIFY", # Required. Will be used to identify the source to set in the
 # commands received.
 # Doesn't have to be the same as the mcid. Here, it could have
 # been "streaming_service" for example.
 "mcid": "spotify"}, # Required and HAS to be the exact MusicCast input
 # identifier of the MusicCast device.
 {"id": "SERVER", "mcid": "server"}, # other sources...
 {"id": "NETRADIO", "mcid": "net_radio"},
 {"id": "TUNER", "mcid": "tuner"},
 {"id": "CD", "mcid": "cd"}],
 "feeds": [] # No feeds on this device.
 },
 { # This is another MusicCast device
 "id": "AVLivingRoom", "model": "RX-A550", "protocol": "YEC", "host": "192.168.1.11",
 "zones": [# This AV Receiver has only 1 zone, but it is "real".
 {"id": "Room",
 "location": "livingroom", # Actual location powered by this zone. The location
 # will be used by messages.
 "mcid": "main"}],
 "sources": [# Same as above.
 {"id": "SPOTIFY", "mcid": "spotify"},
 {"id": "SERVER", "mcid": "server"},
 {"id": "NETRADIO", "mcid": "net_radio"},
 {"id": "TUNER", "mcid": "tuner"}],
 "feeds": [# This device has feeds.
 {"id": "av4", # Required, choose any name that suits, might be used by commands.
 "device_id": "NetworkPlayer", # Required, the id of the device that is connected
 # to this input. It should be a device defined
 # elsewhere in this structure. If not, the gateway
 # will generate a warning but will not fail.
 "zone_id": "MAIN", # Required only if the connected device is MusicCast.
 # This has to be the id, not the mcid.
 "mcid": "av4"}, # Required if the device itself is MusicCast. Again, this is not
 # a choice but it has to be a valid and existing input of the
 # device being defined.
 {"id": "hdmi1",
 "device_id": "BluRayPlayer", # The connected device is NOT MusicCast, so no need
 # for the zone_id. As it happens, this device is
 # not even described elsewhere.
 "mcid": "hdmi1"}, # But this is still required as the device itself is MusicCast.
 {"id": "hdmi2",
 "device_id": "Satellite", # Similar case as above.
 "mcid": "hdmi2"}
]
 },
 { # A non MusicCast device that is connected to MusicCast devices
 "id": "AudioMatrix",
 "zones": [# This device has quite a few zones; only the location is needed as the devices
 # is not MusicCast.
 {"id": "channel1", "location": "kitchen"},
 {"id": "channel2", "location": "office"},
 {"id": "channel3", "location": "diningroom"}],
 "sources": [], # No sources
 "feeds": [
 {"id": "input1", # Connected to the AV Receiver RX-A550 defined above.
 "device_id": "AVLivingRoom", # HAS to be exactly the same as the id of the
 # device, obviously...
 "zone_id": "Room"}, # The zone used by the connected device to feed this one.
 {"id": "input2", # Similar case to above.
 "device_id": "NetworkPlayer",
 "zone_id": "MAIN"}]
 }
]}

2.5.1. Finding your MusicCast identifiers

The easiest way to find out the various identifiers of your MusicCast devices is to manually
make some HTTP requests and look at the replies in a browser.
For instance, assuming the device IP address is 192.168.1.11, then type in the address bar of your
browser the following request:

http://192.168.1.11/YamahaExtendedControl/v1/system/getFeatures

and look at the JSON structure that the device sends back.
Firefox does a good job at showing the structure nicely.

2.6. Naming Devices, Zones, Sources and Feeds

Device, Zone, Source and Feed are all classes in the application.
All need to have their id specified in the system definition so that they can be
uniquely identified by the application. They are used extensively for logs and messages,
and are also part of the logic in a few cases. In particular:

	the Device id is used to identify a device if it is defined in an incoming message;
so if an incoming message specifies the device characteristic, the engine will looking
for this device by comparing the id in the system description and the name given in
the message (which might be the result itself of a conversion from the original MQTT
message via a mapping; check the mqttgateway documentation for more details).

	the Source id is used to find the right source to play a given source selected by the
user. There are a few sources pre-defined in the available commands: cd, tuner,
net-radio, spotify. The devices that have such sources should have their id
set to these same names so that the application logic can locate them.

	the Zone id and Feed id are not used by the application logic and are only there for
messages and logs.

Note

Writing the system description properly is an essential step of the process.
It might be more difficult that expected if one does not understand how the
code works. Do not hesitate to leave an issue on GitHub if you are having difficulty
with this step.

 3. MusicCast Gateway Usage

3. MusicCast Gateway Usage

This document describes how to format the MQTT messages addressed to this gateway.

3.1. Addressing the MusicCast Gateway

As a reminder, the syntax of the MQTT topics recognised by the gateway is:
root/function/gateway/location/device/sender/type where root is replaced by whatever
keyword is given as an option either in the configuration file if the mapping is off,
or in the mapping file if it is on, and will be unique for this gateway (for example home),
type can only be C for command or S for status,
and all the other 5 fields are the characteristics that can be any string.
Only 4 characteristics are used to determine the destination of the message: the function,
the gateway, the location and the device. Not all of them need to be specified.
The basic rules to make sure the message reaches its destination are the following.

	either function or gateway need to be set to their only valid value for this
gateway, which are audiovideo and musiccast; these 2 keywords are defined in
the source code;

	either location or device need to be set to valid location names and
device names; these names are defined in the system definition file which is written
by the user;

	if device is specified, the zone addressed has to be added as an arguments
to the payload with a pair "zone": "whatever_is_the_name_of_the_zone",
otherwise the main zone is selected;

	if location and device are both specified they need to be consistent
(i.e. the location has to be the one that the device zone is associated with in the system
definition file);

In practice, there are 2 ways to address a device:

	the more natural way is by specifying the function (audiovideo)
and the location (e.g. livingroom): home/audiovideo//livingroom//me/C will
work to send a command as long as livingroom is specified as a location for a MusicCast
device within the system definition file; the me is superfluous here and it indicates
the sender.

	the more explicit way is by specifying the gateway (musiccast)
and the device (e.g. networkplayer): home//musiccast//networkplayer/me/C will
work as long as networkplayer is defined as a MusicCast device within the system
definition file. The zone should be preferrably added to the arguments but the default
main zone will be used if it is not.

3.2. Sending commands

The action to perform on the addressed device is specified in the payload of the MQTT message.
The payload can have 2 forms: a plain string representing the action to perform, or a JSON
structure including at least one pair "action": "whatever_is_the_name_of_the_action" and
as many pairs as needed for the arguments, e.g. {"action":"SET_VOLUME", "volume": 35}.

Valid keywords for the actions are defined in the source code.

3.3. Vocabulary

The native vocabulary is the set of keywords that are defined either in the python code
(generally in musiccast_data.py) or in the system definition file.

More precisely:

	function and gateway keywords are defined in the code, and the only used for now are
audiovideo for function and musiccast for gateway;

	location and device keywords are defined in the system definition file;

	sender is only used by the interface to filter echoes, i.e. messages where sender is
equal to musiccast; any other keyword will be accepted without consequence;

	action keywords are defined in the source code;

	argument key keywords are defined in the code mostly with the same syntax as the
arguments in the Yamaha API, e.g. volume; they are also shown in the table below.

3.4. Recognised actions

The actions currently recognised by the interface are listed below.
They are all self-explanatory.
Use those keywords as actions if mapping is disabled.

POWER_OFF
POWER_ON
SET_VOLUME # requires a "volume" argument representing a level between 0 and 100
VOLUME_UP
VOLUME_DOWN
MUTE_ON
MUTE_OFF
MUTE_TOGGLE
SET_INPUT # requires an "input" argument
SOURCE_CD
SOURCE_NETRADIO
SOURCE_TUNER
SOURCE_SPOTIFY
CD_BACK
CD_FORWARD
CD_PAUSE
CD_PLAY
CD_STOP
SPOTIFY_PLAYPAUSE
SPOTIFY_BACK
SPOTIFY_FORWARD
TUNER_PRESET # requires a "preset" argument
NETRADIO_PRESET # requires a "preset" argument

3.5. Mapping

The mapping feature is disabled by default, but if it is implemented,
the mapped MQTT keywords have to be used instead of the native ones.

3.6. Examples

Without mapping, based on the system definition musiccast_sysdef.json provided with
the installation (see below), the topic and payload to use are as follows.

Use the device in the living room with the following topic (no gateway or device specified):
home/audiovideo//livingroom//me/C. As the livingroom location is associated with the
main zone of the RX-A550, this topic should address that device.

Then the payload defines the command:

	Turn on: POWER_ON

	Set the volume to 50%: {"action":"SET_VOLUME", "volume": 50}

If mapping is enabled, the keywords to use depend on the mapping.

The system definition provided with the installation:

{
 "devices": [
 {
 "id": "NetworkPlayer",
 "model": "CD-NT670D",
 "protocol": "YEC",
 "host": "192.168.1.10",
 "zones": [
 {
 "id": "MAIN",
 "location": "",
 "mcid": "main"
 }
],
 "sources": [
 {
 "id": "SPOTIFY",
 "mcid": "spotify"
 },
 {
 "id": "SERVER",
 "mcid": "server"
 },
 {
 "id": "NETRADIO",
 "mcid": "net_radio"
 },
 {
 "id": "TUNER",
 "mcid": "tuner"
 },
 {
 "id": "CD",
 "mcid": "cd"
 }
],
 "feeds": []
 },
 {
 "id": "AVLivingRoom",
 "model": "RX-A550",
 "protocol": "YEC",
 "host": "192.168.1.11",
 "zones": [
 {
 "id": "Room",
 "location": "livingroom",
 "mcid": "main"
 }
],
 "sources": [
 {
 "id": "SPOTIFY",
 "mcid": "spotify"
 },
 {
 "id": "SERVER",
 "mcid": "server"
 },
 {
 "id": "NETRADIO",
 "mcid": "net_radio"
 },
 {
 "id": "TUNER",
 "mcid": "tuner"
 }
],
 "feeds": [
 {
 "id": "av4",
 "device_id": "NetworkPlayer",
 "zone_id": "MAIN",
 "mcid": "av4"
 },
 {
 "id": "hdmi1",
 "device_id": "BluRayPlayer",
 "mcid": "hdmi1"
 },
 {
 "id": "hdmi2",
 "device_id": "Satellite",
 "mcid": "hdmi2"
 }
]
 },
 {
 "id": "AudioMatrix",
 "zones": [
 {
 "id": "channel1",
 "location": "kitchen"
 },
 {
 "id": "channel2",
 "location": "office"
 },
 {
 "id": "channel3",
 "location": "diningroom"
 }
],
 "sources": [],
 "feeds": [
 {
 "id": "input1",
 "device_id": "AVLivingRoom",
 "zone_id": "Room"
 },
 {
 "id": "input2",
 "device_id": "NetworkPlayer",
 "zone_id": "MAIN"
 }
]
 }
]
}

 4. musiccast2mqtt Package

4. musiccast2mqtt Package

4.1. Warning

Work in Progress.

4.2. Modules

4.2.1. __init__

Package header for musiccast2mqtt.

This header declares the version, the exceptions, the constants,
the classes defining the tokens to use in the threading queues,
and the lists of official keywords for the MusicCast API.

	
exception musiccast2mqtt.AnyError

	Bases: exceptions.Exception

All the errors from this package.

	
exception musiccast2mqtt.CommsError

	Bases: musiccast2mqtt.AnyError

Communication errors.

	
exception musiccast2mqtt.LogicError

	Bases: musiccast2mqtt.AnyError

Logic errors.

	
exception musiccast2mqtt.ConfigError

	Bases: musiccast2mqtt.AnyError

Configuration errors.

	
musiccast2mqtt.APP_NAME = 'musiccast'

	Name of this app to appear as sender and gateway in messages.

	
class musiccast2mqtt.DeviceHandle(task, device_id=None, host=None, api_port=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The token to be used in the Device Factory queue.

	
CREATE = 1

	

	
DELETE = 2

	

	
class musiccast2mqtt.DeviceTask(task, zone=None, event=None, msg=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The token to be used in the Device Task queues.

	
REFRESH_STATUS = 0

	

	
PROCESS_EVENT = 1

	

	
PROCESS_MESSAGE = 2

	

	
DISABLE_DEVICE = 3

	

4.2.2. musiccast_start

Entry point for the MusicCast gateway.

	
musiccast2mqtt.musiccast_start.main()

	launch the gateway

4.2.3. musiccast_interface

Interface for MusicCast gateway

=== OLD System Docstring
Representation of the Audio-Video system, including non-MusicCast devices.

The Audio-Video system is represented by a tree structure made of the System
as root, having a list of musiccastDevice objects as branches.
Devices have then lists of Input objects and lists of Zone objects.

The initialisation process is separated in 3 steps:

	Instantiate objects, load the static data from a JSON file into local attributes
and propagate this initialisation steps to the next level, i.e. devices and then
inputs and zones.

	Post initialisation step, where some attributes are created based on the whole
tree structure being already initialised in step 1. For example, finding and
assigning the actual object represented by a string id in the JSON file, is done
here.

	Attempt to retrieve live data from all the MusicCast devices
and initialise various parameters based on this data. In case of failure,
the retrieval of the information is delayed and the functionality of the
device is not available until it goes back online. Beware that in this
case some helper dictionaries might still point to objects that are not valid,
so always test if a device is ready before proceeding using MusicCast related
attributes.

The execution of a command is triggered by a lambda function retrieved from the
ACTIONS dictionary.
These lambda functions are methods called from a Zone objects that
perform all the steps to execute these actions, including sending the actual
requests to the devices over HTTP (through the musiccast_comm module).

Note on replies:
The policy to send back status messages depends on the addressing used
by the incoming MQTT message: if it is addressed specifically to this
interface or to a specific MusicCast device, then a reply will always be sent
back (case called explicit); if it is not, a reply is sent only if a command
is executed, otherwise it stays silent as the message is probably intended for
somebody else.

	
class musiccast2mqtt.musiccast_interface.musiccastInterface(params, msglist_in, msglist_out)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Interface.

Resolves the system definition file path and calls the System class in musiccast_system.
Creates the locations and devices dictionaries.

	Parameters:

	
	params (dictionary) – includes all options from the dedicated section
of the configuration file. This class only requires the sysdefpath option
to be defined. It is the location of the JSON file describing the system. If
that option is not found then the local directory is used instead.

	msglist_in (list of internalMsg) – the list of incoming messages.

	msglist_out (list of internalMsg) – the list of outgoing messages.

	
_get_device_from_id(device_id, raises=False)

	Returns the device object if found, None otherwise.

	
_device_factory()

	Waits on the queue for tasks relating to the devices list.

This is a loop in a thread listening to a queue of devices represented by their
device_id and the IP address where they can be reached.
If the device_id is definitely new then the musiccastDevice class is called to create a new device.
The item in the queue has to be a dictionary containing the following keys:

	‘device_id’: a 12 digit ASCII string,

	‘ip_address’: a valid address string e.g. ‘127.0.0.1’,

	‘task’: one of CREATE or DELETE objects (defined in the package’s __init__)

	
_event_processor()

	Wait for a MusicCast event and dispatches it to the right device.

OLD DOCSTRING:
Checks if a MusicCast event has arrived and parses it.

This method uses the dictionary EVENTS based on all possible fields that
a MusicCast can have (see Yamaha doc for more details). This
dictionary has only 2 levels and every node is either a dict or a
callable. Any event object received from a MusicCast device should
have a structure which is a subset of the EVENTS one. The algorithm
goes through the received event structure in parallel of going through
the EVENTS one. If there is a key mismatch, the specific key in event
that cannot find a match in EVENTS is ignored. If there is a key match,
the lambda function found as value of that key in EVENTS is called with
the value of that same key found in event (the argument).

TODO: check if more than one event could be received in a single call.

	
static _filter_topics(msg)

	Returns True is topics are valid, False otherwise.

	
_resolve_zone(msg)

	Finds the zone to operate by resolving the “address” from the topic items.

The resolution uses both location and device fields from the topic.
The current algorithm is a strict one, meaning that if a field is provided, it needs
to exist otherwise an exception is thrown. One could imagine a more tolerant algorithm
if necessary (e.g. if both location and device are provided and the location produces
a valid result while the device does not, then the location resolution wins).
The location defines a zone directly.
The device defines only the device (…) so the zone has to be in the arguments otherwise
a default is taken (the first zone in the list). This implies that there should always be
at least 1 zone in a device and that the first one should be the main one if possible.
This method should be thread-safe. It uses a re-entrant lock for the devices disctionary.

	Parameters:

	((msg) – class:internalMsg): the incoming message to parse.

	Returns:

	class:Zone: a valid Zone object

	Raises:

	LogicError, ConfigError.

	
_message_processor()

	Waits for a message, parses and executes it.

	
loop_start()

	Starts all the threads and loops needed.

	
loop_stop()

	Stops all loops and threads started in loop_start.

4.2.4. musiccast_discovery

Discovery module for MusicCast devices.

	Based on the UPnP protocol v2.0:

	http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf

This module searches for MusicCast devices in the network by using the UPnP protocol.
A complete search process is made of 2 steps, each launched in a separate thread:

	a discovery step where a broadcast is sent over the network and simple responses are expected
from discovered devices; those responses are put in a queue to be picked up by the
description thread;

	a description step where each discovered device retrieved from the queue is polled to get more
information about it; each discovered new MusicCast device is written to a dictionary to be
retrieved by any other thread that might be interested.

The methods loop_start and loop_stop are used to start or stop the search process.
The method retrieve_new_devices can be called at any time to retrieve a dictionary with all the
devices that have been discovered since the last call.
Use the method get_new_device_event to get an event which will be set each time a new device is
discovered. Use it or not.
The method update_online_devices allows to tell this module what are the devices already online
and avoids going through the description process for these devices. It is a nice to have but it
does not need to be used. If unused, the new devices retrieved with the retrieve_new_devices
call might not be new, but then the calling thread must know that it needs to check that before
doing anything else with those not really new devices.

New devices do not go in any queue but in a dictionary, so even if the retrieve_new_devices
method is not called for a while, it does not matter.

	
musiccast2mqtt.musiccast_discovery._XML_TAGS = {'UDN': ('upnp:device', 'upnp:UDN'), 'friendlyName': ('upnp:device', 'upnp:friendlyName'), 'modelDescription': ('upnp:device', 'upnp:modelDescription'), 'modelName': ('upnp:device', 'upnp:modelName'), 'modelURL': ('upnp:device', 'upnp:modelURL'), 'serialNumber': ('upnp:device', 'upnp:serialNumber'), 'yamaha_URLBase': ('yamaha:X_device', 'yamaha:X_URLBase')}

	Dictionary of relevant tags inside the XML dataframe.
The keys of the dictionary are arbitrary names for the field being referred to; usually it is
the same as the tag name of the XML element being sought, but it does not have to be.
The values are lists of tag names that represent the path down the XML tree to reach the
element requested.

	
musiccast2mqtt.musiccast_discovery._XML_NAMESPACES = {'dlna': 'urn:schemas-dlna-org:device-1-0', 'upnp': 'urn:schemas-upnp-org:device-1-0', 'yamaha': 'urn:schemas-yamaha-com:device-1-0'}

	This dictionary provides the full name-spaces needed to properly parse the tree with the
_XML_TAGS dictionary. It simply avoids to write down the long name-spaces for every tag in the
_XML_TAGS dictionary.

	
musiccast2mqtt.musiccast_discovery._xml_tag(root, key)

	Retrieves the content of the tag based on the key in the dictionary _XML_TAGS.

	
musiccast2mqtt.musiccast_discovery._RESPONSE_HEADERS = {'cache': 'CACHE-CONTROL', 'location': 'LOCATION', 'target': 'ST', 'usn': 'USN'}

	Dictionary that maps the headers of the search response with the attributes of the class.

	
class musiccast2mqtt.musiccast_discovery.searchResponse(response)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a response to the SSDP search.
The attributes of this class are listed as values in the _RESPONSE_HEADERS dictionary,
except for sender which is retrieved from the second field in the response parameter.

	Parameters:

	response – the data as returned by the call to socket.recvfrom

	
class musiccast2mqtt.musiccast_discovery.musiccastDiscovery(device_factory_queue, refresh_event=None, cycle=30)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages the periodic discovery process for new devices online.

The discovery process for MusicCast devices (based on Yamaha documentation):
- launches a SSDP search for Media Renderers;
- Read the responses as they arrive;
- Put all valid devices on the outgoing queue.

	Parameters:

	
	((device_queue) – class:Queue): to put the new devices

	cycle (int [https://docs.python.org/3/library/functions.html#int]) – maximum time between 2 searches, in seconds. Loops only once if it is <= 0.

	refresh_event (Event) – triggers a new search before waiting for the end of cycle.

	
loop_start()

	Starts the loop in a separate thread.

	
loop_stop()

	Stops the loop via the appropriate events.

	
_loop()

	The actual loop.
It does a full search then waits either for a ‘refresh’ event or for the full
cycle, then tests the ‘loop_stop’ event if to exit or loop again.

	
_search()

	Full search process to discover online devices.

Launches two threads and blocks until they are both finished.

	
_discovery(target, mx=3)

	Launches the discovery process.

Sends a search request (SSDP search) then listens to the socket for responses.
Terminates after the socket timeout.

	
_description()

	Retrieves the description of any device found from the search.

Reads the queue for new found devices, retrieves the address to call for
the description, makes the ‘GET’ request accordingly, filters to keep only
the right devices, parses the XML data and puts a new device object on the
new device queue.

4.2.5. musiccast_listener

Listener for MusicCast events over the network.

	
class musiccast2mqtt.musiccast_listener.musiccastListener(port=41100)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

docstring

	
get_musiccast_events_queue()

	Returns the event queue.

	
loop_start()

	Starts the loop in a separate thread.

	
loop_stop()

	Stops the loop via the appropriate events.

	
_loop()

	The actual loop.
It does a full search then waits either for a ‘refresh’ event or for the full
cycle, then tests the ‘loop_stop’ event if to exit or loop again.

	
_create_socket()

	Creates the socket.

	
_release_socket()

	Releases the socket in case of error.

	
_listen()

	Listens for new events.

	The ‘body’ of the event (see below) is in the form:

	‘{“main”:{“power”:”on”},”device_id”:”00A0DED57E83”}’

	or:

	‘{“main”:{“volume”:88},”zone2”:{“volume”:0}, “device_id”:”00A0DED3FD57”}’

The ‘address’ is a pair (host, port) as in (‘192.168.1.44’, 38507).

4.2.6. musiccast_device

Declaration of musiccastDevice objects.

musiccastDevice objects are created when a new device is discovered by the discovery process or when it
is present in the cache file at start-up.
As soon as they are created, a new thread is started with the its own queue to process incoming
events or incoming messages.

Notes on refreshing the device:

There are 3 reasons why one needs to refresh the status of a device:

	1- because the MusicCast devices need to receive at least one request every 10 minutes

	(with the right headers) so that they keep sending events;

	2- when this gateway has sent a set command and one wants to check if the command

	has been successful. It seems though that one needs to wait a bit before requesting
a fresh status as experience shows that firing a getStatus request straight after a
command does not reflect the change even if the command is supposed to be successful.

	3- when the device is ‘down’ or ‘offline’, e.g. it has had a few errors of communication

	and this application has decided to categorise it as not available but still existing,
and therefore at some point it needs to be initialised again (or at least this
application should ‘try’ to initialise it again).

	
class musiccast2mqtt.musiccast_device.musiccastDevice(device_id, host, api_port, listenport, msgl_out, device_factory_queue)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a device in the audio-video system.

	Parameters:

	
	device_id (string) – 12 digit ASCII uniquely representing the device

	ip_address (string) – where to reach the device

	listenport (int [https://docs.python.org/3/library/functions.html#int]) – the port where to listen for incoming events

	msgl_out – the queue for the outgoing messages

	device_factory_queue – the device factory queue (…)

	
get_id()

	Getter for _device_mcid.

	
name()

	Returns a friendly name for the device.

	
get_argument(arg)

	Retrieves argument from arguments dictionary.

This method is used by the lambdas to get access to the argument of the message.
It is essential that the lambdas are running in the same thread as the one that updated
the _msg attribute in the same musiccastDevice instance.

	Parameters:

	arg (string) – the name of the argument sought

	
get_zone(zone_mcid, raises=False)

	Returns the Zone object from its identification.

	Parameters:

	
	zone_mcid (string) – the MusicCast id of the zone searched

	raises (boolean) – if True, raises an exception instead of returning False

	
get_input(input_mcid, raises=False)

	Returns the Input object from its mcid.
:param input_mcid: the MusicCast id of the input searched
:type input_mcid: string
:param raises: if True, raises an exception instead of returning False
:type raises: boolean

	Returns:

	Input object if found, or None

	Raises:

	ConfigError or LogicError.

	
init_infotype(play_info_type)

	Returns a new or an existing instance of PlayInfoType.

For each type there is only one instance of the corresponding class.

	Parameters:

	play_info_type (string) – one of tuner, cd, or netusb.

	Raises:

	ConfigError – if the play_info_type is not recognised.

	
get_infotype(play_info_type)

	Retrieves the info_type instance.

Only used (for now) by the event lambdas.

	
get_feature(flist)

	Returns a branch from the getFeatures tree.

This method retrieves a branch or leaf from a JSON type object.
The argument is a list made of strings and/or pairs of string.
For each string, the method expect to find a dictionary as the next branch,
and selects the value (which is another branch or leaf) returned by that string as key.
For each single key dictionary {key: value}, it expects to find an array or similar objects,
and in that case it searches for the array that contains the right ‘value’ for that ‘key’.

This method helps in reading the responses from Yamaha MusicCast API.

	Parameters:

	flist – list representing a leaf or a branch from a JSON type of string

	Raises:

	CommsError, ConfigError.

Example

Use get_feature((‘zone’, {‘id’: ‘main’}, ‘range_step’, {‘id’: ‘volume’}, ‘max’))
to retrieve

	
is_ready(raises=False)

	Returns True if the device is ready to be operated.

	Parameters:

	raises (boolean) – if True, raises an exception when device is not ready, otherwise
it just returns False.

	Returns:

	True if device is ready, False if not and raises is False.

	Return type:

	boolean

	Raises:

	LogicError – if the device is not ready and the raises argument is True.

	
disable()

	Disables the device to make requests. Can be called more than once.

	
insert_delayed_request(delay, zone)

	Inserts a delayed request in the appropriate list.

	
_device_loop()

	Main thread for a new device.

	
_init_device()

	Initialise the device within its own thread.

	Raises:

	CommsError, ConfigError.

	
process_event(event)

	Processes the event received and executes whatever lambdas found.

This method parses the event through a function and dictionary in musiccast_data that
walks through the event ad matches every step with the template event dictionary.
When it reaches the leaf, a set of lambdas are found to be executed.

	
process_message(msg, zone)

	Processes the incoming message, passing it to the relevant zone.

This method simply handles the incoming message to the right zone.

	
static parse_event(event)

	Reads event dictionary and returns lambdas for each key match found.

	
EVENTS = {'cd': {'device_status': None, 'play_info_updated': <function <lambda>>, 'play_time': <function <lambda>>}, 'clock': {'settings_updated': None}, 'device_id': None, 'dist': {'dist_info_updated': None}, 'main': {'input': <function <lambda>>, 'mute': <function <lambda>>, 'power': <function <lambda>>, 'signal_info_updated': None, 'status_updated': <function <lambda>>, 'volume': <function <lambda>>}, 'netusb': {'account_updated': None, 'list_info_updated': None, 'multiple_play_errors': None, 'play_error': None, 'play_info_updated': <function <lambda>>, 'play_message': <function <lambda>>, 'play_time': <function <lambda>>, 'preset_control': None, 'preset_info_updated': <function <lambda>>, 'recent_info_updated': None, 'trial_status': None, 'trial_time_left': None}, 'system': {'bluetooth_info_updated': None, 'func_status_updated': None, 'location_info_updated': None, 'name_text_updated': None, 'speaker_settings_updated': None, 'stereo_pair_info_updated': None, 'tag_updated': None}, 'tuner': {'play_info_updated': <function <lambda>>, 'preset_info_updated': <function <lambda>>}, 'zone2': {'input': <function <lambda>>, 'mute': <function <lambda>>, 'power': <function <lambda>>, 'signal_info_updated': None, 'status_updated': <function <lambda>>, 'volume': <function <lambda>>}, 'zone3': {}, 'zone4': {}}

	Dictionary to decode incoming events.

The lambdas should be called by a Device object.

4.2.7. musiccast_zone

Representation of a zone.

Assumptions on Zones:

	all MusicCast zones have always a valid input assigned (even when off).

	
class musiccast2mqtt.musiccast_zone.Zone(zone_data, device)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a zone on the device.

	Parameters:

	
	zone_data (dictionary) – the zone data returned from the getFeatures call to the API

	device (Device) – the parent device.

	
name()

	Returns a friendly name for the zone.

	
_get_dict_item(dico, key)

	Retrieves the item in the dictionary.

This is a safety method in case a structure sent back by MusicCast
does not have the item expected. It catches the KeyError exception
and changes it into a CommsError one.

	Parameters:

	
	dico (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary to look into

	item (string) – the key to look for

	
_transform_arg(key, invalue=None, mcvalue=None)

	Transforms a message argument from/to internal to/from MusicCast.

This method goes hand in hand with the TRANSFORM_ARG dictionary.

	Parameters:

	
	key (string) – internal name of argument.

	invalue (string) – the internal value to be transformed; if provided the transformation
is done from this value to the MusicCast value, which is returned.

	mcvalue (string) – the MusicCast value to be transformed; relevant only if invalue is
None, in which case the transformation is done from this value to the
internal value, which is returned.

	Returns:

	the transformed representation of the value.

	Return type:

	string

	
execute_action(msg)

	Executes the action requested in the message

This method relies on the ACTIONS dictionary to produce the lambda to execute.

	Parameters:

	((msg) – py:class:internalMsg): internal message

	Raises:

	LogicError, ConfigError, CommsError – in case of error in executing the lambdas

	
refresh_status()

	Retrieve the state of the zone and store it locally.

	
update_power(mcvalue)

	Updates internal state of zone after change in power state.

	Parameters:

	
	invalue (boolean) – the new value of the power state

	mcvalue (string) – “on” or “standby”

	Returns:

	True if there is a change.

	Return type:

	Boolean

	
set_power(power)

	Sets the power of the zone.

	Parameters:

	power (boolean) – converted into ‘on’ or ‘standby’.

	
is_power_on(raises=False)

	Helper function to test if power of zone is ON.

Always returns True if the zone is ON.

	Parameters:

	raises (boolean) – if True, raises an exception when zone is OFF, otherwise
it just returns False.

	Returns:

	True if zone is ON, False if not and raises is False.

	Return type:

	boolean

	Raises:

	LogicError – if the zone is OFF and the raises argument is True.

	
update_volume(mcvalue=None)

	Updates internal state of zone after change in volume.

	Parameters:

	
	invalue (int [https://docs.python.org/3/library/functions.html#int]) – the new value of the volume in internal metric

	mcvalue (int [https://docs.python.org/3/library/functions.html#int]) – the new value of the volume in MusicCast metric

	Returns:

	True if there is a change.

	Return type:

	Boolean

	
set_volume(vol_up=None)

	Sets the volume of the zone.

	Parameters:

	vol_up (boolean) – if given defines if volume is stepped up or down, if
not then the volume to set has to be in the arguments.

	
update_mute(mcvalue=None)

	Updates internal state of zone after change in mute state.

	Parameters:

	mcvalue (string) – “true” or “false”

	Returns:

	True if there is a change.

	Return type:

	Boolean

	
set_mute(mute)

	Sets the mute property of the zone.

	Parameters:

	mute (boolean) – converted into ‘true’ or ‘false’

	
update_input(mcvalue)

	Updates internal value of input object after change in input.

	Parameters:

	mcvalue (string) – a valid Input MusicCast id

	Returns:

	True if there is a change.

	Return type:

	Boolean

	
set_input(input_mcid=None)

	Sets the input of the zone.

This method simply switches the input of the current zone. It does not matter if the input
is a source or not. No other action is performed, so if for example the input is a source
on the same device and it needs to be started or tuned, this is not done here.

	Parameters:

	input_mcid (string) – input internal identifier

	
get_inputs()

	docstring

	
get_sources()

	docstring

	
set_playback(mc_action, src_mcid=None)

	Triggers the specified play-back action.

To be able to play a source, it has to be selected first.

	Parameters:

	
	action (string) – the action to send to the MusicCast device.

	src_mcid (string) – the MusicCast keyword of the source to be
played, if supplied, otherwise it is expected to be in the
arguments.

	
set_preset(src_mcid=None)

	Set the preset specified in the arguments for the source.

	Parameters:

	source_id (string) – the MusicCast keyword of the source to be
preset, if supplied, otherwise it is expected to be in the
arguments. It can only be tuner or netusb.

	
str_status()

	Returns the full status dictionary.

	
str_zone()

	Returns the identification of a zone.

	
dump_zone()

	Returns most characteristics of a zone.

	
musiccast2mqtt.musiccast_zone.TRANSFORM_ARG = {'action': (<function <lambda>>, <function <lambda>>), 'input': (<function <lambda>>, <function <lambda>>), 'mute': (<function <lambda>>, <function <lambda>>), 'power': (<function <lambda>>, <function <lambda>>), 'preset': (<function <lambda>>, <function <lambda>>), 'source': (<function <lambda>>, <function <lambda>>), 'volume': (<function <lambda>>, <function <lambda>>)}

	Transforms arguments from internal keyword to MusicCast keyword and back.

The value for each key is a pair of lambdas; the first one transforms its arguments
from internal representation to Musiccast, and the second one does the reverse.
The lambdas have to be called by a Zone object.

	
musiccast2mqtt.musiccast_zone.ACTIONS = {'CD_BACK': <function <lambda>>, 'CD_FORWARD': <function <lambda>>, 'CD_PAUSE': <function <lambda>>, 'CD_PLAY': <function <lambda>>, 'CD_STOP': <function <lambda>>, 'GET_INPUTS': <function <lambda>>, 'GET_SOURCES': <function <lambda>>, 'INPUT_CD': <function <lambda>>, 'INPUT_NETRADIO': <function <lambda>>, 'INPUT_SPOTIFY': <function <lambda>>, 'INPUT_TUNER': <function <lambda>>, 'MUTE_OFF': <function <lambda>>, 'MUTE_ON': <function <lambda>>, 'MUTE_TOGGLE': <function <lambda>>, 'NETRADIO_PRESET': <function <lambda>>, 'POWER_OFF': <function <lambda>>, 'POWER_ON': <function <lambda>>, 'SET_INPUT': <function <lambda>>, 'SET_SOURCE': <function <lambda>>, 'SET_VOLUME': <function <lambda>>, 'SOURCE_CD': <function <lambda>>, 'SOURCE_NETRADIO': <function <lambda>>, 'SOURCE_SPOTIFY': <function <lambda>>, 'SOURCE_TUNER': <function <lambda>>, 'SPOTIFY_BACK': <function <lambda>>, 'SPOTIFY_FORWARD': <function <lambda>>, 'SPOTIFY_PLAYPAUSE': <function <lambda>>, 'TUNER_PRESET': <function <lambda>>, 'VOLUME_DOWN': <function <lambda>>, 'VOLUME_UP': <function <lambda>>}

	The dictionary with all the data to process the various commands.

It has to be called from a Zone object.

4.2.8. musiccast_input

Representation of Inputs

	
class musiccast2mqtt.musiccast_input.Input(input_data, device)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents an input on the device.

	Parameters:

	
	input_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – input data from getFeatures

	device (Device) – the parent device

	
class musiccast2mqtt.musiccast_input.Feed(feed_data, device)

	Bases: musiccast2mqtt.musiccast_input.Input

Represents an input on the device that is not a source.

A feed within a MusicCast system is an input for which the play_info_type
field within the getFeatures structure is set to none.

	Parameters:

	
	feed_data (data) – the feed data

	device (Device) – the parent device.

	
class musiccast2mqtt.musiccast_input.Source(source_data, device)

	Bases: musiccast2mqtt.musiccast_input.Input

Represents a source on the device.

A source within a MusicCast system is an input for which the
play_info_type field within the getFeatures structure is set to a
different value than none, normally either cd, tuner or
netusb.

	Parameters:

	
	source_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the source data

	device (Device) – the parent device.

4.2.9. musiccast_playinfotype

Declaration of PlayInfoType structures.

	
class musiccast2mqtt.musiccast_playinfotype.PlayInfoType(play_info_type, device)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents information that is not source specific in Yamaha API.

Some of the information about sources in MusicCast devices are only available for groups of
sources, and not source by source. This is true for the netusb type, which covers a wide
range of sources (server, net_radio, and all streaming services). This information can not
be stored on a source by source basis but in an ad-hoc structure that sources will link to.
For any device, there can be only one instance of each type (cd, tuner and netusb)
so the instantiation of these classes is triggered by the Source object initialisation, that
finds out of what type it is and then calls a sort of factory method within the parent Device
object that then decides to instantiate a new object if it does not exist yet or returns the
existing object (a sort of singleton pattern).

	Parameters:

	
	play_info_type (string) – one of tuner, cd, or netusb.

	((device) – class:Device object): parent device of the source.

	
update_play_info()

	Retrieves the play_info structure.

The sources involved in this command are tuner, cd, and all
sources part of the netusb group.

	
update_preset_info()

	Retrieves the preset_info structure.

The getPresetInfo request involves only types tuner and netusb. Treatment in
either case is different, see the Yamaha doc for details. This method is supposed to be
overridden in both cases.

	
update_play_time(value)

	Updates the play_time attribute with the new value.

Only concerns MusicCast types cd and netusb.
The play_time event get sent every second by MusicCast devices
once a cd or a streaming service starts playing.

	Parameters:

	value (integer in string form) – the new value of play_time.

	
update_play_message(value)

	Updates the play_message attribute with the new value.

This event only applies to the netusb group.

	Parameters:

	value (string) – the new value of play_message.

	
get_preset_arguments(source, preset_num)

	Returns a dictionary with the preset information.

	Parameters:

	
	source (Source) – the source with the preset information

	preset_num (int [https://docs.python.org/3/library/functions.html#int]) – the preset number to retrieve

	
class musiccast2mqtt.musiccast_playinfotype.Tuner(device)

	Bases: musiccast2mqtt.musiccast_playinfotype.PlayInfoType

Tuner specific information.

	Parameters:

	device (Device object) – parent device.

	
update_preset_info()

	Retrieves the preset_info structure.

Info type == tuner: the request requires a band argument that depends on the
features of the device. As the structure returned by the request is a list of objects that
always include the band that the preset relates to, we can concatenate all the preset lists.

	
get_preset_arguments(source, preset_num)

	Returns a dictionary with the preset information.

	Parameters:

	
	source (Source) – the source with the preset information

	preset_num (int [https://docs.python.org/3/library/functions.html#int]) – the preset number to retrieve

	
class musiccast2mqtt.musiccast_playinfotype.CD(device)

	Bases: musiccast2mqtt.musiccast_playinfotype.PlayInfoType

CD specifc information.

	Parameters:

	device (Device object) – parent device.

	
update_play_time(value)

	Updates the play_time attribute with the new value.

	Parameters:

	value (integer in string form) – the new value of play_time.

	
class musiccast2mqtt.musiccast_playinfotype.NetUSB(device)

	Bases: musiccast2mqtt.musiccast_playinfotype.PlayInfoType

NetUSB specific information.

	Parameters:

	device (Device object) – parent device.

	
update_preset_info()

	Retrieves the preset_info structure.

Info type == netusb: the request is sent as is and the structure
returned includes a list of objects where one of fields indicates the
input that the preset relate to (I am not sure what the input can be
anything else that net_radio though).

	
update_play_time(value)

	Updates the play_time attribute with the new value.

Note: There is an uncertainty on which source is playing when the type is netusb. The
event does not give any extra information. It probably means that there can only be one
source that can play at any given time in the netusb group, even if there are multiple
zones in the device.

	Parameters:

	value (integer in string form) – the new value of play_time.

	
update_play_message(value)

	Updates the play_message attribute with the new value.

	Parameters:

	value (string) – the new value of play_message.

	
get_preset_arguments(source, preset_num)

	Returns a dictionary with the preset information.

	Parameters:

	
	source (Source) – the source with the preset information

	preset_num (int [https://docs.python.org/3/library/functions.html#int]) – the preset number to retrieve

4.2.10. musiccast_comm

Low-level communication with the MusicCast system.

	
class musiccast2mqtt.musiccast_comm.musiccastComm(host, api_port, listen_port)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages the low-level calls to the MusicCast devices.

Every instance represents a single live connection to a given MusicCast
device, represented simply by a host address.

	Parameters:

	
	host (string) – the HTTP address for the host, as recognisable
by the httplib library.

	api_port (int [https://docs.python.org/3/library/functions.html#int]) – the port of the API where to send the HTTP requests.

	listen_port (int [https://docs.python.org/3/library/functions.html#int]) – the port where to listen for events; has to go in the headers.

	
disable()

	Disables the requests for this connection.

	
_dummy(qualifier, mc_command)

	Does nothing.

	
_mcrequest(qualifier, mc_command)

	Sends a single HTTP request and returns the response.

This method sends the request and read the response step by step in
order to catch properly any error in the process. Currently the requests
are always with method = ‘GET’ and version = ‘v1’.

	Parameters:

	
	qualifier (string) – the token in the MusicCast syntax representing
either a zone or a source, depending on the type of command
sent;

	mc_command (string) – the command to send at the end of the request;
it has to include any extra argument if there are any.

	Raises:

	commsError – in case of any form of Communication Error with the device.

	Returns:

	
	the dictionary equivalent of the JSON structure sent back as a reply

	from the device.

	Return type:

	dictionary

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 musiccast2mqtt	

 	
 	
 musiccast2mqtt.musiccast_comm	

 	
 	
 musiccast2mqtt.musiccast_device	

 	
 	
 musiccast2mqtt.musiccast_discovery	

 	
 	
 musiccast2mqtt.musiccast_input	

 	
 	
 musiccast2mqtt.musiccast_interface	

 	
 	
 musiccast2mqtt.musiccast_listener	

 	
 	
 musiccast2mqtt.musiccast_playinfotype	

 	
 	
 musiccast2mqtt.musiccast_start	

 	
 	
 musiccast2mqtt.musiccast_zone	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | Z

_

 	
 	_create_socket() (musiccast2mqtt.musiccast_listener.musiccastListener method)

 	_description() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	_device_factory() (musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	_device_loop() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	_discovery() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	_dummy() (musiccast2mqtt.musiccast_comm.musiccastComm method)

 	_event_processor() (musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	_filter_topics() (musiccast2mqtt.musiccast_interface.musiccastInterface static method)

 	_get_device_from_id() (musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	_get_dict_item() (musiccast2mqtt.musiccast_zone.Zone method)

 	_init_device() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	_listen() (musiccast2mqtt.musiccast_listener.musiccastListener method)

 	
 	_loop() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	(musiccast2mqtt.musiccast_listener.musiccastListener method)

 	_mcrequest() (musiccast2mqtt.musiccast_comm.musiccastComm method)

 	_message_processor() (musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	_release_socket() (musiccast2mqtt.musiccast_listener.musiccastListener method)

 	_resolve_zone() (musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	_RESPONSE_HEADERS (in module musiccast2mqtt.musiccast_discovery)

 	_search() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	_transform_arg() (musiccast2mqtt.musiccast_zone.Zone method)

 	_XML_NAMESPACES (in module musiccast2mqtt.musiccast_discovery)

 	_xml_tag() (in module musiccast2mqtt.musiccast_discovery)

 	_XML_TAGS (in module musiccast2mqtt.musiccast_discovery)

A

 	
 	ACTIONS (in module musiccast2mqtt.musiccast_zone)

 	
 	AnyError

 	APP_NAME (in module musiccast2mqtt)

C

 	
 	CD (class in musiccast2mqtt.musiccast_playinfotype)

 	CommsError

 	
 	ConfigError

 	CREATE (musiccast2mqtt.DeviceHandle attribute)

D

 	
 	DELETE (musiccast2mqtt.DeviceHandle attribute)

 	DeviceHandle (class in musiccast2mqtt)

 	DeviceTask (class in musiccast2mqtt)

 	
 	disable() (musiccast2mqtt.musiccast_comm.musiccastComm method)

 	(musiccast2mqtt.musiccast_device.musiccastDevice method)

 	DISABLE_DEVICE (musiccast2mqtt.DeviceTask attribute)

 	dump_zone() (musiccast2mqtt.musiccast_zone.Zone method)

E

 	
 	EVENTS (musiccast2mqtt.musiccast_device.musiccastDevice attribute)

 	
 	execute_action() (musiccast2mqtt.musiccast_zone.Zone method)

F

 	
 	Feed (class in musiccast2mqtt.musiccast_input)

G

 	
 	get_argument() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	get_feature() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	get_id() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	get_infotype() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	get_input() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	get_inputs() (musiccast2mqtt.musiccast_zone.Zone method)

 	
 	get_musiccast_events_queue() (musiccast2mqtt.musiccast_listener.musiccastListener method)

 	get_preset_arguments() (musiccast2mqtt.musiccast_playinfotype.NetUSB method)

 	(musiccast2mqtt.musiccast_playinfotype.PlayInfoType method)

 	(musiccast2mqtt.musiccast_playinfotype.Tuner method)

 	get_sources() (musiccast2mqtt.musiccast_zone.Zone method)

 	get_zone() (musiccast2mqtt.musiccast_device.musiccastDevice method)

I

 	
 	init_infotype() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	Input (class in musiccast2mqtt.musiccast_input)

 	
 	insert_delayed_request() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	is_power_on() (musiccast2mqtt.musiccast_zone.Zone method)

 	is_ready() (musiccast2mqtt.musiccast_device.musiccastDevice method)

L

 	
 	LogicError

 	loop_start() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	(musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	(musiccast2mqtt.musiccast_listener.musiccastListener method)

 	
 	loop_stop() (musiccast2mqtt.musiccast_discovery.musiccastDiscovery method)

 	(musiccast2mqtt.musiccast_interface.musiccastInterface method)

 	(musiccast2mqtt.musiccast_listener.musiccastListener method)

M

 	
 	main() (in module musiccast2mqtt.musiccast_start)

 	musiccast2mqtt (module)

 	musiccast2mqtt.musiccast_comm (module)

 	musiccast2mqtt.musiccast_device (module)

 	musiccast2mqtt.musiccast_discovery (module)

 	musiccast2mqtt.musiccast_input (module)

 	musiccast2mqtt.musiccast_interface (module)

 	musiccast2mqtt.musiccast_listener (module)

 	
 	musiccast2mqtt.musiccast_playinfotype (module)

 	musiccast2mqtt.musiccast_start (module)

 	musiccast2mqtt.musiccast_zone (module)

 	musiccastComm (class in musiccast2mqtt.musiccast_comm)

 	musiccastDevice (class in musiccast2mqtt.musiccast_device)

 	musiccastDiscovery (class in musiccast2mqtt.musiccast_discovery)

 	musiccastInterface (class in musiccast2mqtt.musiccast_interface)

 	musiccastListener (class in musiccast2mqtt.musiccast_listener)

N

 	
 	name() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	(musiccast2mqtt.musiccast_zone.Zone method)

 	
 	NetUSB (class in musiccast2mqtt.musiccast_playinfotype)

P

 	
 	parse_event() (musiccast2mqtt.musiccast_device.musiccastDevice static method)

 	PlayInfoType (class in musiccast2mqtt.musiccast_playinfotype)

 	PROCESS_EVENT (musiccast2mqtt.DeviceTask attribute)

 	
 	process_event() (musiccast2mqtt.musiccast_device.musiccastDevice method)

 	PROCESS_MESSAGE (musiccast2mqtt.DeviceTask attribute)

 	process_message() (musiccast2mqtt.musiccast_device.musiccastDevice method)

R

 	
 	REFRESH_STATUS (musiccast2mqtt.DeviceTask attribute)

 	
 	refresh_status() (musiccast2mqtt.musiccast_zone.Zone method)

S

 	
 	searchResponse (class in musiccast2mqtt.musiccast_discovery)

 	set_input() (musiccast2mqtt.musiccast_zone.Zone method)

 	set_mute() (musiccast2mqtt.musiccast_zone.Zone method)

 	set_playback() (musiccast2mqtt.musiccast_zone.Zone method)

 	set_power() (musiccast2mqtt.musiccast_zone.Zone method)

 	
 	set_preset() (musiccast2mqtt.musiccast_zone.Zone method)

 	set_volume() (musiccast2mqtt.musiccast_zone.Zone method)

 	Source (class in musiccast2mqtt.musiccast_input)

 	str_status() (musiccast2mqtt.musiccast_zone.Zone method)

 	str_zone() (musiccast2mqtt.musiccast_zone.Zone method)

T

 	
 	TRANSFORM_ARG (in module musiccast2mqtt.musiccast_zone)

 	
 	Tuner (class in musiccast2mqtt.musiccast_playinfotype)

U

 	
 	update_input() (musiccast2mqtt.musiccast_zone.Zone method)

 	update_mute() (musiccast2mqtt.musiccast_zone.Zone method)

 	update_play_info() (musiccast2mqtt.musiccast_playinfotype.PlayInfoType method)

 	update_play_message() (musiccast2mqtt.musiccast_playinfotype.NetUSB method)

 	(musiccast2mqtt.musiccast_playinfotype.PlayInfoType method)

 	update_play_time() (musiccast2mqtt.musiccast_playinfotype.CD method)

 	(musiccast2mqtt.musiccast_playinfotype.NetUSB method)

 	(musiccast2mqtt.musiccast_playinfotype.PlayInfoType method)

 	
 	update_power() (musiccast2mqtt.musiccast_zone.Zone method)

 	update_preset_info() (musiccast2mqtt.musiccast_playinfotype.NetUSB method)

 	(musiccast2mqtt.musiccast_playinfotype.PlayInfoType method)

 	(musiccast2mqtt.musiccast_playinfotype.Tuner method)

 	update_volume() (musiccast2mqtt.musiccast_zone.Zone method)

Z

 	
 	Zone (class in musiccast2mqtt.musiccast_zone)

_static/comment-bright.png

_images/musiccast_multiroomsetup.png
Typical Multi-Room Audio Setup

LOCATION B LOCATION C LOC/EHON

Amplified audio signal to speakers

USER

LOCATION A

SOURCE A
SOURCE B
SOURCE C
FEED 1
FEED 1
FEED 2
FEED 3
FEED 4
SOURCE B

| —
| —
|

-

Audio links

[L—1 |

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/musiccast_commandview.png
LOCATION

Amplification

DEVICE

Source Generation

SOURCE

DEVICE

Zone
commands

Power, Input, Volume, Mute...

Source
commands

Power, Play, Pause, Stop...

Case when
source is on the
same device as
the zone

amplification.

Case when
source ison a
different device
from the zone
amplification.

_images/musiccast_datarepresentation.png
devices
medevices
_nmsgl

_nsgin

_msgout

_arguments

_devices by_id

Class Name

Attribute
Music

Attributes

Read-Only
Attribute

tuple of all MusicCast devices
outgoing message list
incoming message being processed
outgoing message to be posted
dict of arguments from msgin

dict of devices from id.

system
zones

inputs
feeds

sources

gateway

musiccast

onn
_ready
_load_time

_features

nfotype_d
_nczone_d
_zone_num

_zone_index

_preset_info
_play_time

_play_nmessage

device

points to parent Device

id internal name

internal name of location

musiccast id (if any)

boolean, internal value of power state

points to Input object, current selection

int, internal value of volume

boolean, internal value of mute state

int

string, protocol id volume_mi int

string, IP address int

string, name of gateway. boolean

boolean. True if device is musigst. object from getstatus

mecComm object N time of last successful status request

boolean bool, True f status has to be refreshed

last lood_musiccast() call

object from getDevicelnfo

object from getFeatures

dict of info types from play__info_type

dict of zones from mcid

int, number of zones = en(zones)

int, next zone i refresh ‘queue’ Feed

_renote_dev_id

_remote_zone_id
_remote_dev.
_remote_zone

tupi of Input objects location

mpleb;{eed objects

dict of Inputs fxom id
string, intetngl noge

device

mcid

points to parent Device
internal name
musiccast id (if any)

id of connected device
id of connected zone

points to connected Device object
points to connected Zone object

stringr oge of “cd”, “tuner” or "netusb”
points to parent Device object
object from getPlaylnfo~«.

boolean e | souree]
int ~{RISEUUG RSl points to PlayinfoType object

list of "am" and/or "fm" and/or "dab"
object from getPresetinfo

integer n string form

object from getPresetinfo
integer in string form
string

_images/musiccast_jsonschema.png
internal id (string)

array of devices

array of sources
ay of feeds

required field is required
optional field is optional

sicCast field is required only if device is MusicCast
field is required only if connected device is MusicCast

internal id (string)

(string)
musiccast id (string)

internal id (string)
musiccast id (string)

internal id (string)

id of connected device
id of connected zone
musiccast id (string)

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to musiccast2mqtt

 		
 Welcome

 		
 Installation

 		
 Execution

 		
 MusicCast gateway to MQTT

 		
 Introduction

 		
 Installation

 		
 Configuration

 		
 Launch

 		
 Defining the audio-video System

 		
 Finding your Mus